S2S ASR Advanced issues

- **Tight coupling**
 - ASR should output N-best
 - Translated all (lattice)
 - Choose best translation
 - (MT as a LM for ASR)

- **Remove disfluencies/hestitations**

- **Add more relevant data**
 - Automatically convert past tense/third person data to present tense/first+second person …
MT output isn’t grammatical

- TTS doesn’t care and just says it
- TTS should try to say MT output with more breaks.

TTS (unit selection)

- As a LM on MT output
- Choose the best translation on what is said best
Speech Processing 15-492/18-492

Voice Conversion
Voice Conversion

- **Live (or offline)**
 - Convert an existing voice to another
 - Use only a small amount of target speech

- **Uses:**
 - Synthesis without collecting lots of data
 - Disguising voices
 - Emotional voices without full synthesis support

- **Also called**
 - Voice transformation, Voice morphing
Voice Identity

What makes a voice identity

- **Lexical Choice:**
 - Woo-hoo,
 - I pity the fool …

- **Phonetic choice**

- **Intonation and duration**

- **Spectral qualities (vocal tract shape)**

- **Excitation**
Voice Conversion techniques

- **Full ASR and TTS**
 - Much too hard to do reliably

- **Codebook transformation**
 - ASR HMM state to HMM state transformation

- **GMM based transformation**
 - Build a mapping function between frames
Learning VC models

- **First need to get parallel speech**
 - Source and Target say same thing
 - Use DTW to align (in the spectral domain)
 - Trying to learn a functional mapping
 - 20-50 utterances

- **“Text-independent” VC**
 - Means no parallel speech available
 - Use some form of synthesis to generate it
VC Training process

- Extract F0, power and MFCC from source and target utterances
- DTW align source and target
- Loop until convergence
 - Build GMM to map between source/target
 - DTW source/target using GMM mapping
VC Training process

Source F0 → log → Compute Means And Std. Devs.
Target F0 → log → Compute Means And Std. Devs.

Source Speaker Filter Features → Add Dynamic Features → Power Threshold → DTW → Train GMM W/EM
Target Speaker Filter Features → Add Dynamic Features → Power Threshold

Iterate
VC Run-time

- Source Speech
- F0
- Filter Features
- Power
- log scale z-map
- GMM map
- MLSA Filter
- MLPG
Voice Transformation

- **Festvox GMM transformation suite (Toda)**

<table>
<thead>
<tr>
<th></th>
<th>awb</th>
<th>bdl</th>
<th>jmk</th>
<th>slt</th>
</tr>
</thead>
<tbody>
<tr>
<td>awb</td>
<td>🔊</td>
<td>🔊</td>
<td>🔊</td>
<td>🔊</td>
</tr>
<tr>
<td>bdl</td>
<td>🔊</td>
<td>🔊</td>
<td>🔊</td>
<td>🔊</td>
</tr>
<tr>
<td>jmk</td>
<td>🔊</td>
<td>🔊</td>
<td>🔊</td>
<td>🔊</td>
</tr>
<tr>
<td>slt</td>
<td>🔊</td>
<td>🔊</td>
<td>🔊</td>
<td>🔊</td>
</tr>
</tbody>
</table>
VC in Synthesis

- **Can be used as a post filter in synthesis**
 - Build `kal_diphone` to target VC
 - Use on all output of `kal_diphone`

- **Can be used to convert a full DB**
 - Convert a full db and rebuild a voice
Style/Emotion Conversion

- **Unit Selection (or SPS)**
 - Require lots of data in desired style/emotion

- **VC technique**
 - Use as filter to main voice (same speaker)
 - Convert neutral to angry, sad, happy …
Can you say that again?

- Voice conversion for speaking in noise
- Different quality when you repeat things
- Different quality when you speak in noise
 - Lombard effect (when very loud)
 - “Speech-in-noise” in regular noise
Collect data
- Randomly play noise in person’s ears
- Normal
- In Noise

Collect 500 of each type

Build VC model
- Normal -> in-Noise

Actually
- Spectral, duration, f0 and power differences
Synthesis in Noise

- For bus information task
- Play different synthesis information utts
 - With SIN synthesizer
 - With SWN synthesizer
 - With VC (SWN->SIN) synthesizer
- Measure their understanding
 - SIN synthesizer better (in Noise)
 - SIN synthesizer better (without Noise for elderly)
Transterpolation

- *Incrementally transform a voice X%*
 - BDL-SLT by 10%
 - SLT-BDL by 10%

- *Count when you think it changes from M-F*

- *Fun but what are the uses …*
De-identification

- **Remove speaker identity**
 - But keep it still human like

- **Health Records**
 - HIPAA laws require this
 - Not just removing names and SSNs

- **Use Voice conversion to get “new” voices**
VC and SPS

- **Becoming closely related**
 - Small amount of target speaker
 - Use larger background models
Cross Lingual Voice Conversion

- **Use phonetic mapping synthesis**
 - Sounds like very accented speech
- **Use VC to convert the output**
 - Require only small amount of target language