Speech Processing 15-492/18-492

Voice Conversion 2
De-identification

- **Remove speaker identity**
 - But keep it still human like

- **Health Records**
 - HIPAA laws require this
 - Not just removing names and SSNs

- **Use Voice conversion to get “new” voices**
De-identification

- **Best would be ASR to text and TTS**
 - *But it would all sound the same*
 - *And it would loose spontaneity*
- **VC to some example speaker**
 - *But then you’d need lots of example speakers*
 - *And you can still detect some properties of source speaker*
De-identification by GMM VC

- **Using standard GMM VC**
 - Can still identify 50% of the voices (out of 24)
 - (Human’s cant but machine can)

- **Need something more extreme**
GMM VC plus duration

- Find the average duration of source and target speakers
- Modify length of speech by factor
 - Has to be overall factor as no phoneme information is available
- For de-identification
 - < 30% still identified
- Need to be more extreme
What about transterpolation > 1.0?

- Certainly gives another voice
- Moved further away from source
- Original
- GMM to kal
- GMM to kal trans 1.2
- GMM to kal trans 2.0
How can tell if VC works?

Ask people
 - Does it sound like the target
 - (Does it not sound like the source)

Use objective metrics
 - Some automatic score
Human listening tests

- **ABX tests**
 - Source, Target and transformed speech
 - Does X sound more like A or B

- **AX tests**
 - Source/Target and transformed speech
 - Were A and X produced by same or different speakers

- Over multiple listeners you can get consensus

- Note different results for A->B than B->A
What if you know the speakers?

- **Test with CMU voices**
 - CMU listeners
 - Non-CMU listeners

- **Results are still basically the same**
 - Voices that convert better are the same
 - Know the speakers doesn’t make a difference
Objective Measures

• Need to have a automatic measure too

• Mel-Cepstral Distortion
 – Euclidean distance between MFCC
 \[\frac{10}{\ln 10} \sqrt{2 \sum_{d=1}^{24} \left(mc_d^{(t)} - mc_d^{(e)} \right)^2} \]
 – Lower order MFCCs have bigger magnitudes
 – Thus this is scaled to favor lower order MFCCs
 – Scaling factor is to make it a nice number

• Results are between 3.5 and 6.5 (smaller is better)
Cross Lingual Voice Conversion

- **Have your voice in another language**
 - Speech to Speech translations systems
- **It’s OK to be non-native accented**
- **But we need parallel data**
 - But I can’t speak X
 - Fake it but it should *very* accented
 - Use source phones, but it sound *very* *very* accented
Cross-Lingual VC

- **Find a bilingual speaker**
 - A(german) and A(english)

- **For your non-bi-lingual speaker B(english)**
 - Build A(english)->B(english) VC model

- **For cross-lingual B(german)**
 - A(german) plus A(english)->B(english)

- **Sort of works, but not very well**
Cross-lingual VC

- A voice has both
 - Speaker specific components
 - Language specific components
- For CLVC you want to separate these
- How do you evaluate it?
 - With bilingual speaker
 - With human listeners
 - Does it have an accent
 - Where is this person from
 - Is this the same person speaking
Backwards speech

- **Playing speech backwards**
 - Still has speaker properties
 - Can be language independent
 - Speaker 1
 - Speaker 2
 - Speaker 2 or 1
New Language with VC

- **In order to build support in new languages**
- **Use existing language databases**
 - Find “similar” phones in different languages
 - Synthesis with these “similar” phones”
- **Collect parallel data**
 - Xenophone synthesis (X)
 - Native speaker (N)
- **Build VC between X->N**
 - Use as filter on xenophone synthesis
- **Sort of works**
 - Some people don’t do the VC stage!
VC factors

- *Can be done in real time*
 - *Delay needn’t be more than a few frames*

- *Don’t need phonetic information*
 - *Though some people now do this*
 - *Synthesis plus VC can do this*

- *Can be done in any language*
 - *Only need F0, MFCC and power for features*
VC vc Synthesis

- **In general**
 - Voice conversion
 - Clear and understandable but
 - Not have full target voice properties
 - Synthesis
 - Bad joins and disfluencies
 - Clear properties of target voice
- **Really bad unit selection**
 - E.g. with too small databases (10 utts)
 - Still has good target voice properties
VC and SPS

- **Becoming closely related**
 - Small amount of target speaker
 - Use larger background models