Speech Processing 15-492/18-492

Speech Translation
Speech Translation

- **Three part systems**
 - ASR -> Translation -> TTS

- **System configurations**
 - One way – phrasal
 - One way – broadcast/lecture
 - 1.5 way – phrasal with limited answers
 - Two way – full two way
Machine Translation
Technologies

- **Phrasal**
 - Phrase to phrase look up

- **Template:**
 - Template fillers, fixed translation

- **Interlingua**
 - Translation into meaning representation

- **Statistical Machine Translation**
 - From large collect of parallel text

- **Classification base translation**
 - Identify classes and deal directly with them
Choices in Translation

Choose any two ...

- High accuracy
- Large vocabulary
- Fully automatic

Speech vs Text

- Speech less clear than text
- Less speech to train from
- Needs to be real-time (probably)
Phrase to Phrase

- Greetings
- Do you need medical attention?
- Relatively easy to build, but limited use

Template translations

- The next train leaves at TIME from gate GATE form PLACE
- Limited but still useful
Interlingua

- **Translate sentences into standard form**
- **Generate sentences from standard form**
- **PROS:**
 - Can do multiple languages easily
 - Can be very accurate
- **CONS**
 - Designing universal interlingua is very hard
 - Doesn’t do well when out of domain
Statistical Machine Translation

- **Build probabilistic models from parallel text**
- **Parallel text often available from**
 - Bilingual organizations
 - Governments, UN
 - Relatively easy to collect
 - Requires translators rather than MT experts
<table>
<thead>
<tr>
<th>English</th>
<th>Twi</th>
</tr>
</thead>
<tbody>
<tr>
<td>The dog chases the cat</td>
<td>Ofi'at kowi'ã lhiyohli</td>
</tr>
<tr>
<td>The cat chases the dog</td>
<td>Kowi'at ofi'ã lhiyohli</td>
</tr>
<tr>
<td>The dog stinks</td>
<td>Ofi'at shoha</td>
</tr>
<tr>
<td>The woman loves the man</td>
<td>Ihooat hattakã hollo</td>
</tr>
<tr>
<td>I chase her/him</td>
<td>Lhiyohlili</td>
</tr>
<tr>
<td>She/he chases me</td>
<td>Salhiyohli</td>
</tr>
<tr>
<td>She/he dances</td>
<td>Hilha</td>
</tr>
</tbody>
</table>
Learning from Parallel Text

1. Ofi'at kowi'ã lhiyohlili 1. The dog chases the cat
2. Kowi'at ofi'ã lhiyohlili 2. The cat chases the dog
3. Ofi'at shoha 3. The dog stinks
4. Ihooat hattakã hollo 4. The woman loves the man
5. Lhiyohlili 5. I chase her/him
6. Salhiyohlili 6. She/he chases me
7. Hilha 7. She/he dances
Statistical Machine Translation

PROS
- Data collection doesn’t require MT experts
- Data driven
- Degrades gracefully when out of domain

CONS
- Needs all language pairs
- Needs good/lots of data
- Hard to fix specific errors
SPEECH Translation

- **Speech isn’t text**
 - *Different style, hard to find lots of examples*

- **Speech isn’t fluent**
 - *False starts, hesitations, ungrammatical*

- **ASR never makes errors 😊**
One Way: Broadcast

- **One speaker**
 - Lecturer: can modify language model

- **Multiple speakers**
 - May be repeat speakers (News Anchor)
 - May had other noises: music etc
 - (TV programs)

- **Doesn’t need to be real time (maybe)**
Two Way: Dialog

- *Users can detect own errors and correct*
- *Needs to be real time*
- *One user may be much more familiar*
- *How do you teach the other user*
- *Typically domain directed*
Speech Technology Issues

- **ASR:**
 - Disfluencies, dialects, speaking style
 - Unfamiliarity with system

- **TTS:**
 - MT output isn’t always fluent
 - TTS says it anyway
 - Can be hard to understand
Speech Technology Issues

- Spoken not Written Languages
 - Arabic vs Arabic Dialects
 - Mixture of languages
 - Politeness levels
 - Gender in speech