Speech Processing 15-492/18-492

Speech Recognition
Systems
Other ASR techniques
How good are they?

- Expected ASR
- Factors that make things worse

How good do they need to be?
- What can you do with low WER?
ASR Tasks

Continual Progress in Speech Recognition at (D)ARPA Evaluations

Word Error Rates

- Conversational Speech (telephone line)
- Unlimited vocabulary
- Broadcast News
- Read Speech 1000 words
- Read Speech 5000 words
- Read Speech 20000 words
- Read Speech 60000 words

Years: 1987 - 1998
What makes it worse

- **Channel**
 - Telephone vs Wide band
 - Close-talking vs far-field

- **Style:**
 - Command and Control
 - Limit information getting
 - Limit domain but general speech
 - Machine directed vs Human directed speech
 - Broadcast (performance) vs Conversational
 - Single vs Dialog vs Multiperson
Expected WER: Real-time

- **Command and Control**
 - *Limited vocabulary and directed speech*
 - < 10% (< 5% for some users)

- **Simple Dialog**
 - *Machine directed speech with interested users*
 - < 20% (but sometimes works with < 30%)

- **Dictation**
 - Single speaker, well performed
 - <5% for some users > 30% for (short term) users

- **Speech-to-Speech Translation**
 - Machine mediated, target domain
 - <20% (but will vary for different people)
Expected WER: offline

- **Broadcast News**
 - Large vocabulary, well performed
 - <10% but not real-time (maybe 100 times real time)

- **Conversational Speech (Call Home)**
 - Large vocabulary, not well performed
 - > 40% WER (depends on particular users and conversations)

- **Information retrieval**
 - Large vocabulary very varied content
 - > 60% can still give useful results
Other uses

- TV show subtitling for the deaf
- Court transcription
- Medical dictation
- Air traffic control transcription
Other ASR techniques

- **Including Articulatory/Phonetic Features (Metze)**
- **Build recognizers for**
 - Voiced/unvoiced
 - Nasality
 - Closures (quiet part of stops)
 - Aspiration (Fricatives)
 - Tongue position
- **Run all in parallel and “join” them**
- **Combine with more standard approaches**
- **Can be more robust to speaking style**
Multi-engine Recognition

- **Use three recognizers and combine results**
- **Rover**
 - Combine scores per-sentence
- **Combine lattices**
 - Confusion networks
- **Cross adaptation**
 - Interleave systems with adaptation
- **It usually works better when system different**
 - (and both of them good)
Whispered Speech

- Doesn’t disturb other people
- Can use throat mike
- Works in noisy environment
Muscle Movement

- **EMG: Electromyographic Signals**
 - Recognize muscle impulses
- *Can work in noisy environments*
- *Can work without you making a noise*
Articulatory Movement

- **Attach metal studs to:**
 - Lips, teeth, tongue, velum

- **Record movement in magnetic field**
 - Non-intrusive
EMA: Electromagentoarticulatograph
ASR Summary

- **ASR requires:**
 - **Acoustic model**
 - HMMs trained from lots of data
 - **Pronunciation lexicon**
 - List of pronunciations for words
 - **Language model**
 - Trigrams trained from lots of data
ASR Trade-offs

- **More/better training data**
 - Well transcribed and closest to target system
- **Better signal**
 - Better microphone, no noise
- **Better speaker**
 - Interested party, know how to speak
- **Time and memory**
 - Bigger systems do better
 - Greater CPU does better
Homework 1

- **Build a speech recognition system**
 - An acoustic model
 - A pronunciation lexicon
 - A language model
- **Note it takes time to build**
- **What is your initial WER**
 - How did you improve it
- **Submitted by 3:30pm Monday 29th Sep**