Speech Processing 15-492/18-492

Speech Recognition
 Acoustic modeling
 Pronunciation dictionary
Acoustic Modeling

- *Speech and Signal Variability*
- *Measuring Error*
- *Pronunciation lexicons*
“Mr Wright should write to Ms Wright right away about his Ford or four door Honda.

- Homophones: same pronunciation
- “wright” “right” “write” /r ayt/
- “ford or” “four door” /f ao r d ao r/
Style Variability

- Different articulation in different situations
- Clear vs Conversational
- Whisper vs shouting
- Talking to machine, talking to others
- Frustrated speech
Speaker variability

- **Gender, age, dialect, health**
- **Speaker dependent systems**
- **Speaker independent systems**
- **Speaker adaptive systems**
 - Enrolment stage (acoustics and language)
Environment Variability

- Different background noises
 - Office vs Outside
- Different applications, different environments
 - Desktop dictation, to Warehouse pick
- Single speaker vs Multispeaker
- Background music
Channel Variability

- **Telephone vs Desktop**
 - 8KHz vs 16KHz
- **PDA vs Desktop**
- **Close-talking vs far-field**
- **Cell Phone vs Landline**
Measuring Speech Recognition Error

- **Word Error Rate**
 - Substitutions: word is replaced
 - Deletions: word is missed out
 - Insertions: word is added

\[
\text{WER} = 100\% \times \frac{\text{Subs} + \text{Dels} + \text{Ins}}{\text{word in correct sentence}}
\]
WER requires:

- Transcription (the correct word string)
- Alignment between ASR output and Transcript
- Not just left to right matching

Sometimes Accuracy is given

- 100-WER
- NOT number of words correct
Word Error Rate

- **Can get > 100%**
 - But something is very wrong
- **Outputting “the” only, ignoring the speech**
 - Sometimes gives WER < 100%
- **All words are treated equal**
 - “This specimen” vs “The specimen”
 - “Is absent” vs “Is present”
Signal Acquisition

- **High quality signal quality**
 - Lower sample rate will increase WER
 - 8KHz baseline
 - 16KHz -10%
End-Point Detection

- **Long silence will likely increase WER**
 - It will recognize phantom words
- **Need to find the speech in the signal**
 - VAD (Voice Activity Detection)
 - Find beginning and end of speech
- **Typically do continuous recognition**
 - Recognized while listening
 - But need end point (have to wait)
Feature normalization

- **Sometimes do normalization**
 - Remove mean from MFCCs
 - Can make recognition more reliable in noise
- **Often include deltas and delta deltas**
- **Sometimes to feature reduction**
 - Principal Component Analysis
What phones/segments

- **Need the best set for discrimination**
 - Not necessary the same as Linguistic Phones
- **More phones means more training**
 - And needs to have consistent Lexicon
- **Extra phones**
 - \(t \) vs \(dx \)
 - \(t \) vs \(nx: /t \ w \ eh \ n \ t \ iy/ \) vs \(/t \ w \ eh \ nx \ iy/ \)
 - Stops as closures and bursts
 - Schwas: \(ax \) and \(ix \)
 - Syllabics: \(el, \ em, \ en \)
 - Accents/Tones: \(ah1, ah0, \)
Context dependency

- **Care about the contexts of each phone**
 - Post vocalic `/r/` and `/n/` `/m/` affect vowel
 - Utterances start and end affect phonemes

- **Need more than simple phone models**
Tri-phone Models

- **Have models for each phone and context**
 - 43^3 contexts about 80K models
- **Not all contexts have enough examples**
 - oy (oy) oy very rare
 - sh (ax) n very common
- **Merge tri-phones that are similar**
 - E.g t(ih)n with d(ih)n
Find phones to merge

- **Using phonetic features**
 - Most similar feature, most similar acoustics
 - Stops, voicing, vowel type …
- **Usually automatic cluster of triphones**
 - Using CART trees indexed by phonetic features
Adaptation

- **Change behavior after use**
- **Human adaptation**
 - They will change how they speak
- **Channel adaptation**
 - Cepstral Normalization
- **Model adaptation**
 - Move the means (or weights on means)
Adaptation

- Assume recognition is correct
 - (Maybe with some threshold)

- Modify model to make answer more correct
 - Adaptation to speaker characteristics
 - Adaptation to speaker style
 - Can improve accuracy by a few %
Pronunciation lexicon

- Need list of words and their pronunciation
 - Pencil p eh n s ih l
 - Two t uw
 - Too t uw
 - ...

- Need pronunciation of ALL words
What’s a word

- **Basic words are clear**
- **What about morphological variants**
 - walk, walks, walked, walking
- **Multi-word words**
 - Los Angeles, New York
- **Contractions**
 - Wanna, gonna …
- **Yes ALL words that you will recognize**
Homographs: (same writing different pronunciation)
- bass: /b ae s/ (fish) /b ey s/ (music)
- project: N /p r aa jh eh k t/ V /p r ax jh eh k t/

Natural variants
- route: /r uw t/ and /r aw t/
- coupon: /k uw p ao n/ and /k y uw p ao n/
- water: /w ao t er/ and /w ao dx er/
Free pronunciation lexicon
American English
Over 100K words
Not always consistent
Words for your application will be missing
 We can never get a complete lexicon
Pronunciation of Unknown Words

- **Build statistical model from lexicon**
 - Predict pronunciation from letters
 - *(Humans do this when they see a new word)*
- **Typically about 70-85% correct for new words**
 - Should always check domain words
Modeling Variability

- **In Gaussians (in HMM state)**
 - Multiple mixtures

- **In HMM topology**
 - Number of states and connectivity

- **In State Tying**
 - Sharing Gaussians between states

- **In Phone choice**
 - More/less phones

- **In Lexical Pronunciation**
 - Multiple lexical entries
Summary

- Acoustic modeling
- Word Error Rate/Accuracy
- Lexical pronunciation
Section 8.2 Definition of Hidden Markov Model pp 380-393

Section 8.4 Practical Issues in using HMMS pp 398-405

In Huang et al.

Two page description of the contents emailed to dhuggins@cs.cmu.edu before 3:30pm Monday 15th September